5 Key Business Applications of Sentiment Analysis

In order to gauge whether your customers are happy with what you’re doing, customer satisfaction is crucial. It is proven that a high degree of satisfaction increases the lifetime value of a customer, more customer retention, and a stronger reputation of the brand. Alternatively referred to as “opinion mining,” sentiment analysis can help product managers understand the customer satisfaction level.

Analyzing customer sentiments to predict accurate sentiments has been challenging and time-consuming due to the high volumes of collected data from various sources. Having an NLP and AI expert on hand can help you get started with sentiment analysis if you want to understand your customers in a dynamic market.

What Goes into Procuring Sentiment Analysis

Artificial Intelligence algorithms, Natural Language Processing (NLP) methods, and Machine Learning (ML) models contribute to sentiment analysis. This includes neural networks, unigram algorithms, skip-gram algorithms, and bag-of-word regression models using machine learning and deep learning (DL). The use of natural language processing techniques in machine learning software allows unstructured texts to be sorted by emotion and opinion.

As an example, let’s look at this. Imagine that you are responsible for understanding the general sentiment in the support conversations at your company. Get a sense of your customers’ ongoing mood and tone. You would need an emotion classifier in such a situation to produce predictions regarding relevant conversations. Dashboards that are often designed to measure customer satisfaction can be populated with sentiment data you’ve collected from your customers.

Why is Sentiment Analysis Important in Business?

At first glance, it may seem like a fancy class project, but sentiment analysis has many practical applications in the business world. Using sentiment analysis to solve business problems is an excellent starting point.

  1. You can aggregate customer sentiment from free-form feedback data and identify the primary promoters or detractors of your product or service. Once the detractors have been converted to promoters, you can gradually implement corrective measures to rebuild trust.
  2. It is possible to detect hateful and inappropriate comments on your online platform, which will help you keep it free of bullies.
  3. The feedback you receive from recent employees, peer reviews, and manager feedback can help you identify demotivated or about-to-quit-employees and provide them with constructive ways to succeed.

Based on these sentiment analysis examples, you can see that sentiment analysis is an excellent tool for gaining a better understanding of employees and customers, keeping platforms safe, improving customer shopping, and learning from competitors. Sentiment analysis can be combined with other artificial intelligence technologies like text summarization to provide deeper, more powerful insights.

Industry Applications of Sentiment Analysis

In sentiment analysis, the text is analyzed to identify and extract subjective information, which businesses can use to measure how customers feel about their service offerings. Using AI-driven technology, sentiment analysis traces the undertone of text by channeling extensive digital information.

The use of sentiment analysis is widespread across various industries. Several popular sentiment analysis applications exist, such as monitoring social media, managing customer support, and reviewing customer feedback. Here are a few more to get you going with the idea of integrating sentiment analysis into the marketing & customer analysis symmetry of your business:

  1. Social Media Monitoring

Social media posts often contain some of the most honest opinions about your products, services, and businesses because they’re unsolicited. By incorporating NLP experts on board, you can analyze individual emotions and overall public sentiment across all social platforms based on their comments, feedback, and reviews.

In chat, sentiment analysis can detect sarcasm, understand acronyms (OMG, LOL, ROFL, etc.), correct misspellings and misuses, and detect sarcasm.

  1. Managing & Monitoring Business Reputation

Sentiment analysis is widely used in business for brand monitoring. A business can leave negative reviews online for a long time, and the longer it does so, the worse the situation will become. Negative brand mentions can be detected as soon as they occur with sentiment analysis tools.

Furthermore, you can monitor your progress over time by keeping track of your brand’s image and reputation. You can use this information to develop usable statistics and information about your brand, whether you are monitoring news stories, blogs, forums, or social media for information about your brand.

In addition to following trends and anticipating outcomes, machine learning can be relied upon to stay one step ahead of the competition and become proactive rather than reactive.

  1. Analyzing the Market Response to a Product

Learn what users are saying about your new product soon after launch, or examine feedback you may have yet to see. Aspect-based sentiment analysis allows you to locate only the information you need based on your search terms (interface, UX, functionality). Identify what makes your most valuable customers happy, learn how your product is perceived by your target audience, and improve your product. The whole thing is based on sentiment analysis.

  1. Get to Know the Voice of Your Customers (VoCs)

Creating a personalized customer experience requires communication and listening to the voice of your customers. As a result, businesses have access to a large number of conversation sentiment analysis datasets that can be integrated into the development of ML models in order to automate the sentiment analysis process. Taking all feedback, you receive from customers, such as web feedback, surveys, chats, and customer service calls, and evaluating it. This data can be categorized and structured with the help of sentiment analysis so that you can discover recurring topics and concerns.

  1. Analyzing Market & Competitors

In order to research the market and your competitors, you can use sentiment analysis. Get a sense of who your competitors are mentioning positively and how your marketing efforts compare. Look at how your competitors speak positively to their customers, and take some of those phrases and use them in your own brand message and tone of voice guide.

Advantage of Manual Sentiment Analysis Over AI-Integrated Machines & Apps

In a world of billions of people, each communicates uniquely, e.g., adding tiny variations to the language and attaching sentiments to it, which are easy for us to understand but difficult for machines to understand. Sarcasm, for instance, is the opposite of what is true when we use it in our sentences. Sentiment analysis through machine learning models is difficult to predict customer behavior, as a matter of fact. Therefore, manual sentiment analysis has an advantage over automated sentiment analysis performed through AI-integrated applications and machines.

Final Words

For accurate sentiment analysis results, a blended approach to sentiment analysis is the most effective way for businesses to utilize it to understand customer behavior. Consequently, Cogito, an NLP expert, combines manual and automated approaches for accurate sentiment analysis.

In addition to manually conducting sentiment analysis of your social media channels and customer feedback on other platforms, the experts here can also assist you in getting AI training data in order to build ML models for automated sentiment analysis based on real data rather than assumptions made based on a small sample.

This post is originally published at click here


Insightful Interpretation of Machine Learning Datasets

It is possible to simulate human intelligence in machines with artificial intelligence (AI) and machine learning (ML). These simulations allow them to complete a variety of tasks without much human assistance – Companies need precise training data if they are to develop AI and ML models that are more efficient and newer. It is possible to gain a better understanding of a given problem through the use of training datasets which can subsequently be enriched through data annotation and labelling for further use as artificial intelligence (AI) training data.  

What is Machine Learning?

The goal of machine learning is to imitate humans’ learning process through the use of data and algorithms. It gradually improves the accuracy of its predictions. Statistical methods allow algorithms to be trained to make classifications or predictions within data mining projects using machine learning — this provides key insights into the data. 

Ideally, data mining improves business and application decision-making, influencing key growth metrics through these insights. Increasing demand for data scientists will result from the continued growth and development of big data, which requires them to identify the most pertinent business questions and the data that will be required to answer the questions.

Types of Machine Learning

An algorithm learns to improve its accuracy by applying supervised, unsupervised, semi-supervised, and reinforcement learning approaches. These four basic approaches are classified according to how an algorithm learns. Data scientists choose which algorithm and machine learning type depending on the data they wish to analyze.

  1. Supervised Learning 

These types of machine learning algorithms require labeled training data and variables data scientists want the algorithm to evaluate for correlations. Here, the input and output of the algorithm are both specified by the data scientists.

  1. Unsupervised Learning

It involves algorithms that learn from unlabeled data, where an algorithm scans data sets to identify meaningful connections. All predictions or recommendations are predetermined by the data that the algorithms train on.

  1. Semi-supervised Learning

There are two approaches to machine learning in this approach, the model is fed mostly labeled training data by a data scientist, but it is free to explore the data on its own and develop its own insights about it.

  1. Reinforcement Learning

As part of reinforcement learning, data scientists teach a machine how to complete a multistep process governed by clearly defined rules. For the most part, an algorithm decides how to complete a task on its own, but data scientists program it to complete it and give it positive or negative cues as it works out how to accomplish it.

Real-world Machine Learning Use Cases

You might encounter machine learning every day in the following ways:

  1. Speech Recognition 

Alternatively called automatic speech recognition (ASR), computer speech recognition, or speech-to-text, this technology converts human speech into the written form using natural language processing (NLP). A number of mobile devices include speech recognition in their systems so that users can conduct voice searches—like Google Assistant in Android smartphones, Siri in Apple devices, and Amazon’s Alexa in media devices. 

  1. Customer Service

Human agents are being replaced by online chatbots as customer service grows. We are seeing the shift in customer engagement across websites and social media platforms as these companies provide answers to frequently asked questions (FAQs) around topics such as shipping or product delivery, or cross-selling product recommendations. Slack and Messenger, for example, as well as virtual agents and voice assistants, are some examples of messaging bots on e-commerce sites with virtual agents.

3. Computer Vision

Computers and systems can use this AI technology to glean meaningful information from images, videos, and other visual inputs; Using this technology, they can take action based on these inputs. It is distinguished from image recognition tasks by its ability to provide recommendations. The application of computer vision in the industry of photo tagging on social media, radiology imaging in healthcare, and self-driving cars is based on convolutional neural networks.

  1. Recommendation Engines

Online retailers can make useful add-on recommendations to customers during checkout using data on past consumption behavior. AI algorithms can help us discover data trends for developing more effective cross-selling strategies.

  1. Automated Stock Trading

Without human intervention, AI-driven high-frequency trading platforms execute thousands or millions of trades every day in order to optimize stock portfolios. 

What is Training Data?

Machine learning algorithms develop an understanding of datasets by processing data and finding connections. In order to make this connection and find patterns in processed data, an ML system must first learn. After the ‘learning,’ it can then make decisions based on the learned patterns. ML algorithms can solve problems from retro observations – Exposing machines to relevant data over time allows them to evolve and improve. The training data quality directly influences the ML model’s performance quality. 

Cogito is a leading data annotation company assisting AI and machine learning enterprises with high-quality training data. In its decade-long journey as a data procurer, the company has built credibility for the accuracy and timely delivery of training data to ensure the quick accomplishment of data-driven AI models. 

What is Test Data?

When an ML model is built using training data, you need to test it with ‘unseen’ data. This testing data is used to evaluate the future predictions or classifications the model makes. The validation set is another partition of the dataset that is tested iteratively before the test data is entered; this testing allows developers to identify and correct overfitting before the test data is entered. 

Both positive and negative tests are performed using test data to verify functions produce the expected results for given inputs and to determine whether the software is capable of handling unusual, exceptional, or unexpected inputs. As your test data management strategy can be optimized by outsourcing data annotation to an industry expert, you can ensure quality information reaches test cases more quickly.

Training Dataset vs. Test Dataset

An ML model can learn patterns by learning insights from training data, which is approximately 80% of the complete dataset to be fed into the model. Testing data represent the actual dataset since they evaluate the model’s performance, monitor its progress, and skew it for optimal results.

The training data is typically 20% of the entire dataset, while the testing data confirms the model’s functionality. In essence, the training data train the model, and the testing data confirms its effectiveness. 

Enriching Datasets Using Data Annotation & Labeling

Building and training an ML model will require large volumes of training data. Data annotation is the process of adding tags and labels to training data. In order to achieve this goal, ML models require properly annotated training data in order to process data and gain specific information. 

Data annotation helps machines identify specific patterns and trends in data by connecting all the dots. Enterprises must understand how different factors affect the decision-making process in order to achieve business success. Data annotation services hold the key to accelerating businesses into the future. 

Cogito can Help with Data Annotation Services

With Live Enterprise, organizations can make intuitive decisions automatically at scale, get actionable insights from real-time solutions, experience anytime/anywhere, and get deep visibility into data across functions to become more productive with AI and machine learning innovations. Cogito offers training data annotation services for machine learning and artificial intelligence. The agile system at Cogito combines human-empowered data annotation and automated annotation & labelling tools to process unstructured data. 

This Post Is Originally Published at click here

Image Annotation : overview 2022 used various type of annotation

One of the most crucial phases in creating computer vision and image recognition systems, which entails identifying, getting, characterizing, and evaluating outcomes from digital images or videos, is image annotation.

AI applications frequently employ computer vision, including security, medical imaging, autonomous cars, and others. As a result, image annotation is essential for developing AI/ML in many fields and sectors.

Before we dig deep into the topic, let us discuss some basic nuances of image annotation.

Image annotation

Adding labels to an image is known as an image annotation. These labels are set by the AI engineer and are selected to provide details about what is seen in the image to the computer vision model.

react to section with heart react to section with light react to section with money react to section with thumbs-down The number of labels on an image might be different according to the project. A single label will sufficiently convey the complete image’s information (image classification) for specific projects. Other applications need many items labeled with distinct labels inside a single photograph.

The Process of Image Annotation. How does it work?

Three crucial elements are required to annotate an image:

1- Images

2 – Adding annotations to the photos

3 – A tool for adding annotations to the photos

Finding and training annotators to complete the annotation tasks is the first step in most image annotation initiatives. Although AI is highly specialized, annotating AI training data is not always necessary. While a master’s degree in machine learning is required to build a self-driving automobile, it is not needed to draw boxes around cars in photos (bounding box annotation). As a result, few annotators hold degrees in machine learning.

However, because each organization will have distinct needs, these annotators should get in-depth training on the requirements and norms of each annotation project.

After receiving training on annotating the data, the annotation team will begin working on hundreds or thousands of photos on a platform specifically designed for image annotation. This platform’s software needs to be equipped with all the tools required for the particular kind of annotation to be done.

What methods and techniques exist for image annotation?

There are many different image annotation methods and techniques, but it doesn’t imply you should use them all. Understanding the most popular image annotation methods and techniques along with use cases will help you decide which annotation tool to use for your project and what it requires.

Bounding boxes

Rectangles are drawn around symmetrical items like furniture, vehicles, and packages using bounding boxes. This facilitates object detection and algorithm localization, which is essential for driverless cars.

Self-driving automobiles can navigate the roadways securely with annotations of people, traffic signals, and vehicles. Bounding boxes come in two and three dimensions (cuboids).


Segmentation goes beyond object identification and picture categorization. With this technique, a picture is divided into several parts, each of which is given a label. Since each segment consists of pixels, each pixel has a label, which increases the accuracy of the annotation.

Three categories of segmentation exist:

1 Semantic segmentation

Semantic segmentation involves grouping an image into clusters and giving each group a label. Consider that we have a picture of three sheep. Each sheep will be counted as a separate cluster for semantic segmentation. The sky will serve as the background, which will also be considered.

2 Instance segmentation

Objects’ existence, position, form, and number are determined through instance segmentation. For example, instance segmentation may count the number of persons in a picture. Let’s revisit the sheep illustration. Even though they are given the same name, each sheep will be counted as a different instance in the instance segmentation scenario.

3 Panoptic segmentation

Instance segmentation and semantic segmentation converge in panoptic segmentation. It semantically segments the image and categorizes each pixel, identifying the instances to which each pixel belongs (instance segmentation). Each sheep will be tallied independently in our case, even if all the pixels in the image will be given names.

4 Skeletal Annotation

Skeletal annotation draws attention to body alignment and mobility. Annotators use this technique to connect lines on the human body by adding dots at the locations where the lines articulate. For instance, a line from a point on the wrist to a point on the elbow is then connected to the shoulder, and so on.

This produces a condensed representation of a body’s location that computers can recognize. This approach is used for video in most sports use cases, requiring annotators to precisely identify body postures over tens of thousands of individual frames.

5 Bitmask Annotation

This annotation style permits gaps or disjointed annotations by connecting individual pixels to particular objects.

6 Polygons

The edges of objects with asymmetrical shapes, such as rooftops, plants, and landmarks, are annotated using polygons.

7 Key-points

By placing dots around the target item, such as facial characteristics, body parts, and stances, key points are used to annotate microscopic shapes and details.

To achieve certain annotation objectives, any of the aforementioned annotation approaches can be combined. AI firms have freedom and alternatives when organizing annotation projects as the company can also do customised annotations as per the requirements.

Essential applications and benefits of Image annotation

When employing computer vision (CV) models, image annotation is extremely important for machine learning and artificial intelligence.

Across sectors, the advantages and significance of picture annotation services are becoming recognized. In 2023, the market for AI and machine learning data solutions is predicted to reach $1.2 billion.

Here are some examples of how businesses in various industries use image annotation services to their advantage.

Transportation: CV is used by self-driving automobiles, which are a reality today. Advanced machine learning algorithms must power these vehicles to ensure their efficiency and safety. Automobile makers may create intelligent apps for these autonomous vehicles with picture annotation.

Healthcare: In healthcare, CV can assist increase the precision of the diagnosis and raise the standard of care. With image annotation, CV systems may use CT scans, MRIs, and other diagnostic technologies to focus on patterns and problems like tumors or hairline fractures.

Agriculture: Precision agriculture combines established farming practices with cutting-edge technology to increase profitability, production, and sustainability. CV systems make it feasible to forecast agricultural output, assess plant health, and improve soil quality. In modern agriculture, robotics, GPS sensors, and drones play significant roles.

eCommerce and retail: Annotating images may improve clients’ user experiences and aid them in selecting the best items. When an annotation is appropriately done, each item on the website will have precise descriptions and labels. Annotation ensures that the products are correctly categorized, improving search results. Additionally, it helps to improve visual search. react to section with heart react to section with light react to section with money react to section with thumbs-down


The goal of image annotation is to make the most of technology, and it is something that will never go away. When key AI projects need image annotation, most AI organizations use expert data labeling services.

react to section with heart react to section with light react to section with money react to section with thumbs-down Businesses that provide expert data labeling services, like Cogito or Anolytics, appen, or any other, have skilled experts to help with data labeling and annotation. These companies can tailor their services to your unique needs as they provide seamless project management, quality control, and lower overheads. Originally published at – https://hackernoon.com/image-annotation-what-no-one-is-talking-about-in-2022

Which is better for image classification, supervised or unsupervised classification?

Image classification is actually fundamental task that helps to classify and comprehend the entire image as a whole. The main motive of image classification is to classify the image by assigning it to a specific label.

Usually, Image Classification to images in which only one object appears and that is only analyzed. In contrast, object detection involves both classification and localization tasks, and is used to analyze more realistic cases in which multiple objects may exist in an image.

Supervised vs Unsupervised Classification

Supervised classification is based on the idea that a user can select sample pixels in an image that are representative of specific classes and then direct the image processing software to use these training sites as references for the classification of all other pixels in the image.

The classification is the process done with multi-step workflow, while, the Image Classification toolbar has been developed to provide an integrated environment to perform classifications with the tools.

Not only does the toolbar help with the workflow for performing unsupervised and supervised classification, it also contains additional functionality for analyzing input data, creating training samples and signature files, and determining the quality of the training samples and signature files.

Supervised Image Classification

Supervised classification uses the spectral signatures obtained from training samples to classify an image. With the assistance of the Image Data Classification toolbar, you can easily create training samples to represent the classes you want to extract. You can also easily create a signature file from the training samples, which is then used by the multivariate classification tools to classify the image.

In supervised classification, you select representative samples for each land cover class. The software then uses these “training sites” and applies them to the entire image.

For supervised image classification, you first create training samples. For example, you mark urban areas by marking them in the image. Then, you would continue adding training sites representative in the entire image.

Unsupervised Image Classification

Unsupervised classification finds spectral classes (or clusters) in a multiband image without the analyst’s intervention. The Image Classification toolbar aids in unsupervised classification by providing access to the tools to create the clusters, capability to analyze the quality of the clusters, and access to classification tools

In unsupervised classification, it first groups pixels into “clusters” based on their properties. Then, you classify each cluster with a land cover class.

Overall, unsupervised classification is the most basic technique. Because you don’t need samples for unsupervised classification, it’s an easy way to segment and understand an image.

Which one is better?

No doubt, unsupervised classification is fairly quick and easy to run. There is no extensive prior knowledge of area required, but you must be able to identify and label classes after the classification. The classes are created purely based on spectral information, therefore they are not as subjective as manual visual interpretation.

While on the other hand, one of the disadvantages of unsupervised classification is that the spectral classes do not always correspond to informational classes. The user also has to spend time interpreting and label the classes following the classification. Spectral properties of classes can also change over time, so you can’t always use the same class information when moving from one image to another.

Both have their own advantages and disadvantages, but for machine learning projects, supervised image classification is better to make the objects recognized with the better accuracy. Overall, object-based classification outperformed both unsupervised and supervised pixel-based classification methods. And depending on the AI model or machine learning algorithms compatibility, image classification process is followed to classify the images with better accuracy and quality object detection.

Where Machine Learning as a Service Works and Where not?

Machine learning is now used develop the fully functional AI model for different fields. Machine learning as a service (MLaaS) is also working well into multiple fields like search engine where owing to searching history of the users, the recommended items are shown as per their browsing history searching interest creating to run an automated advertisement companion.

Continue reading “Where Machine Learning as a Service Works and Where not?”

How to Find Best Image Annotation Company in India?

Image annotation is becoming the need of AI industry to train the machines with large volume of visual data sets. It is a kind of object lebelling in images making recognizable for computer vision that helps machine learning algorithms to understand the similar objects. And there are various types of image annotation techniques applied while doing this job.

Continue reading “How to Find Best Image Annotation Company in India?”

What are the Future Prospects and Applications of Deep Learning?

Deep learning, part of machine learning that helps machines to understand and utilize the big data for better insights about the particular patterns for developing the AI-based models. Actually, deep learning is kind of more complex learning process for machines to learn the neuro network-based patterns and help computer vision to provide the more accurate results.

Continue reading “What are the Future Prospects and Applications of Deep Learning?”

How Much Data is Enough for Analysis into Various Fields?

Data analytics is kind of analysis process of huge amount of data for specific purpose. And data analysis using the data analytics is done for industries like healthcare, travel, gaming and energy management. Data analytics helps to understand the trend and insights about the particular industry. But the question is right here how much data do you need for useful data analysis.

Continue reading “How Much Data is Enough for Analysis into Various Fields?”